
Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

70

�Extending the Alternative: A Scaling Device and Queues

5	� Extending the Alternative:
A Scaling Device and Queues

This chapter demonstrates further capabilities of the alternative by:

•	 setting timer alarms and using them as alternative guards
•	 showing that alternatives can be nested
•	 incorporating pre-conditions into alternatives

Many machines used in automated processes have some means of monitoring their operation, for
example, by calculating running averages of specific values and ensuring they stay within a specified
range. If they go out of range then the machine recalibrates itself. In this chapter we shall build a model
of such a device, but without having to interface to a real machine! This happens for example in medical
laboratory equipment where a running check is kept of the range of values for each test that has been
produced. Over a given period it is known that the mean value will lie within known bounds. If the
machine is out with those bounds then it enters an automatic recalibration process.

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme
for Engineers and Geoscientists

Month 16
I was a construction

supervisor in
the North Sea

advising and
helping foremen

solve problems

I was a

he
s

Real work
International opportunities

�ree work placements
al Internationa
or�ree wo

I wanted real responsibili�
 I joined MITAS because

www.discovermitas.com

http://bookboon.com/
http://bookboon.com/count/advert/9da50518-808b-41b3-9e08-9fe200fbad87

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

71

�Extending the Alternative: A Scaling Device and Queues

5.1	 The Scaling Device Definition

The scaling device reads (Belapurkar, 2013) incoming integers that arrive every second. The device then
multiplies the incoming value by its current scaling factor, which it then outputs, together with the
original value. The scaling factor is doubled at a regular interval, of say, 5 seconds. In addition, there
is a controlling function that suspends the operation of the scaling device again at regular intervals, of
say, 11 seconds to simulate the testing of its operation. When it is suspended the scaling device outputs
its current scaling factor to the controller. At some time later, the controller, having computed another
scaling factor, will inject the new scaling factor into the controller, which resumes its normal mode of
operation. While the scaling device is suspended by the controller it outputs all input values unscaled.

The structure of the system, showing the channels that will be used for the communications specified
above is shown in Figure 5-1.

Figure 5-1 Structure of the Scaling Device

The processes GNumbers, GFixedDelay and GPrint are available in the package groovyPlugAndPlay.
Thus the discussion revolves around the structure of the remaining two processes.

5.1.1	 The Controller Process

The code that implements the Controller process is shown in Listing 5-1.

10	class Controller implements CSProcess {
11		
12	 def long testInterval = 11000
13	 def long computeInterval = 2000
14	 def int addition = 1
15	
16	 def ChannelInput factor
17	 def ChannelOutput suspend
18	 def ChannelOutput injector
19	

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

72

�Extending the Alternative: A Scaling Device and Queues

20	 void run() {
21	 def currentFactor = 0
22	 def timer = new CSTimer()
23	 def timeout = timer.read()
24		
25	 while (true) {
26	 timeout = timeout + testInterval
27	 timer.after (timeout)
28	 suspend.write (0)
29	 currentFactor = factor.read()
30	 currentFactor = currentFactor + addition
31	 timer.sleep(computeInterval)
32	 injector.write (currentFactor)
33	 }
34	 }
35	}

Listing 5-1 Code of the Controller Process

From Figure 5-1 we can see that Controller has three channel properties {16–18}. In addition, it has
two timeout values, one testInterval {12} determines the period between successive tests of the
scaling device, which has a default value of 11 seconds. The other, computeInterval {13} is used to
simulate the time it takes to compute the revised scaling factor, which has a default value of 2 seconds.
All times are expressed in milliseconds.

The JCSP class CSTimer provides a means of manipulating time in a consistent and coherent manner.
An instance of CSTimer, called timer is defined {22}. The timer can be read at any instant and the
current long value of the system clock in milliseconds is returned, which also justifies the type long
for the interval properties defined previously. The value of timeout is set to the current time {23}. The
device operates as a never ending loop {25–33}, which for most automated tools is reasonable.

Within the loop the timeout is incremented by the testInterval {26}, which must be some time
in the future. The after operation on timer causes the process to be suspended until the value of
the current time is after the indicated alarm time. While a process is suspended in this manner it will
consume no processing resource. Once the testInterval has elapsed, the Controller writes a signal
to the Scale process to suspend its operation {28}. The value communicated does not matter, so the
value 0 is perfectly adequate. The Controller then reads the current scaling factor from the Scale
process into currentFactor using the channel factor {29}. The value of currentFactor is then
modified {30} by the value contained in the property addition {14} (default value 1), to simulate a
change in the scaling factor. The time to undertake this recalculation is then simulated by suspending
the process for the computeInterval by calling the sleep method on the timer {31}. The sleep
method deschedules the process for the specified sleeping time.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

73

�Extending the Alternative: A Scaling Device and Queues

The process consumes no processor resource while it is sleeping. In this case the effect of after and
sleep are the same, achieved in a different manner. In some situations, the after method will be the
more appropriate because it provides relative time. The sleep method provides an absolute value. Once
the process has been rescheduled, it writes {32} the newly computed currentFactor on the injector
channel to the Scale process.

5.1.2	 The Scale Process

The structure of the Scale process is shown in Listings 5-2 and 5-3. The operation of the Scale
process can be partitioned into two distinct parts; when it is operating in the normal mode and when
it is suspended. In the normal mode it accepts inputs from the channels timedData and suspend, see
Figure 5-1. It will also respond to timer alarms indicating that the scaling factor should be doubled. In
the suspended mode it will only respond to inputs from the channels timedData and injector. To
reflect these situations a set of guards will be needed for each mode. Furthermore, the suspended set
will only be considered when the process has moved from the normal mode into the suspended mode.

10	class Scale implements CSProcess {
11		
12	 def int scaling = 2
13	 def int multiplier = 2
14	
15	 def ChannelOutput outChannel
16	 def ChannelOutput factor
17	 def ChannelInput inChannel
18	 def ChannelInput suspend
19	 def ChannelInput injector
20	
21	 void run () {
22	 def SECOND = 1000
23	 def DOUBLE_INTERVAL	= 5 * SECOND
24	 def NORMAL_SUSPEND	 = 0
25	 def NORMAL_TIMER	 = 1
26	 def NORMAL_IN	 = 2
27	 def SUSPENDED_INJECT	= 0
28	 def SUSPENDED_IN	 = 1
29	 def timer = new CSTimer()
30	 def normalAlt = new ALT ([suspend, timer, inChannel])
31	 def suspendedAlt = new ALT ([injector, inChannel])
32	 def timeout = timer.read() + DOUBLE_INTERVAL
33	 timer.setAlarm (timeout)

Listing 5-2 The Properties and Initialisation of the Scale Process

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

74

�Extending the Alternative: A Scaling Device and Queues

The channel properties are defined {15–19}, together with the initial scaling value {12} and the
multiplier that will be applied to the scaling factor {13}. The inChannel property {17} is connected to
timedData of Figure 5-1 and outChannel to scaledData {15}. Within the run() method a number
of constants are defined; DOUBLE_INTERVAL {23} specifies the number of milliseconds between the
doubling of the scaling factor. The remainder are constants {24–28} used to identify which case is to
be considered when the switch statements associated with the alternatives are processed. A timer is
defined {29}, followed by the two different alternatives {30, 31}. Both of the alternatives will be accessed
using a priSelect method and thus the ordering of the guards in the alternatives is important and
should always start with the highest priority going to the first in sequence. The alternative normalAlt
applies when the device is not in a suspended state. The highest priority guard is that associated with
the suspend channel. The next highest will result from a timer alarm and the lowest is the input of
some data on the inChannel. In the suspended state the suspendedAlt will apply and this is just
an alternation over the injector and inChannel channels because timer alarms are ignored. At {32}
the timeout for the first doubling of the scaling factor is defined by reading the timer and adding
the doubling interval. An alarm on the timer is made by calling the method setAlarm {33} with the
required time, which must be some time in the future. This means that normalAlt {30} will be enabled
on the timer alternative once the value of the timer has increased beyond timeout. A timer contained
within an alternative guard that is disabled, consumes no processor resource, until the alarm is enabled.

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

75

�Extending the Alternative: A Scaling Device and Queues

34	 while (true) {
35	 switch (normalAlt.priSelect()) {
36			
37	 case NORMAL_SUSPEND :
38	 suspend.read()
39	 factor.write(scaling)
40	 def suspended = true
41	 println "Suspended"
42	 while (suspended) {
43				
44		 switch (suspendedAlt.priSelect()) {
45					
46			 case SUSPENDED_INJECT:
47				 scaling = injector.read()
48				 println "Injected scaling is $scaling"
49				 suspended = false
50				 timeout = timer.read() + DOUBLE_INTERVAL
51				 timer.setAlarm (timeout)
52				 break
53					
54			 case SUSPENDED_IN:
55				 def inValue = inChannel.read()
56				 def result = new ScaledData()
57				 result.original = inValue
58				 result.scaled = inValue
59				 outChannel.write (result)
60				 break
61		 } // end-switch
62	 } //end-while
63	 break
64			
65	 case NORMAL_TIMER:
66	 timeout = timer.read() + DOUBLE_INTERVAL
67	 timer.setAlarm (timeout)
68	 scaling = scaling * multiplier
69	 println "Normal Timer: new scaling is $scaling"
70	 break
71			
72	 case NORMAL_IN:
73	 def inValue = inChannel.read()
74	 def result = new ScaledData()
75	 result.original = inValue
76	 result.scaled = inValue * scaling
77	 outChannel.write (result)
78	 break
79			

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

76

�Extending the Alternative: A Scaling Device and Queues

80	 } //end-switch
81	 } //end-while
82	 } //end-run
83	} // end Scale

Listing 5-3 The Scale Process Main Loop

The main loop of the scaling device, Listing 5-3, comprises {34–81} and is created by means of a never
ending while loop {34}. At the start of the main loop the device is presumed to be in the normal state
and thus we switch on the normalAlt {35}. If none of the guards is ready the process waits until one
becomes enabled. Each time an alternative is executed the guards are evaluated to determine which are
enabled and then a selection is made from the ready ones according to the type of select operation
undertaken. In this case a priSelect() is deemed more appropriate.

If the enabled alternative results from an input on the suspend channel then the case NORMAL_SUSPEND
will be obeyed {37}. First, the channel suspend must be read {38}, the value of which can be ignored
because this is just a signal to enter the suspended state. Recall that the Controller process wrote
a nominal value of 0 (Listing 5-1 {28}). The Scale process then writes its current scaling factor to
the factor channel {39}. The property suspended is defined and set true {40}. A message is printed
{41} and then the loop associated with the suspended state is entered {42}. In this state the process
switches on suspendedAlt {31}, which has two alternatives.

If the enabled alternative is an input on the injector channel the case SUSPENDED_INJECT is obeyed
{46}. The new value of scaling is read from the injector channel {47} and a message displaying
the new factor printed {48}. The value of suspended is now reset {49} to false, which will cause the
controlling while loop {42} to terminate. Because the injector input is also taken as an indication that
normal operation can resume, the timer alarm can be reset {50–51}.

In the suspended state, the only other alternative that can occur, results from input on the inChannel,
this causes the SUSPENED_IN case to be obeyed {54}. The channel inChannel is read into inValue {55}.
A variable result of type ScaledData is defined {56}, see Listing 5-4. The device in the suspended
state does not apply the scaling to any incoming data and so both the original and scaled values
of result are set to inValue {57–58}. The result object is then written to outChannel {59}.

The remaining cases relate to the operation of the device in the normal state. If a timer alarm occurs
the code associated with the NORMAL_TIMER case is obeyed {65}. The timer’s timeout alarm is reset
for the next doubling period {66–67}. The scaling is multiplied by multiplier, which is 2 for doubling
{68} as required by the device specification and an appropriate message printed {69}. The final case deals
with inputs from inChannel {72}. The value is read from inChannel into inValue {73} and placed
in the original property {75} of a new result object {74}. A scaled value is placed in the scaled
property of a new result object {76}, which is then written to outChannel {77}.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

77

�Extending the Alternative: A Scaling Device and Queues

5.1.3	 The ScaledData Object

The ScaledData object is used to pass a pair of values from the Scale process to the GPrint process
see Figure 5-1. Its structure is shown in Listing 6-3.

10	class ScaledData implements Serializable {
11		
12	 def int original
13	 def int scaled
14	
15	 def String toString () {
16	 def s = " " + original + "\t\t" + scaled
17	 return s
18	 }	
19	}

Listing 5-4 The ScaledData Object

The properties of the object; original and scaled are defined {12, 13} and then a toString() method
is defined {15–18} that is used when the object is printed.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

78

�Extending the Alternative: A Scaling Device and Queues

More importantly, this is the first instance of user defined objects being communicated between processes.
The first aspect to notice is there are no public data manipulation methods, other than implicit getters
and setters that are created by the Groovy environment automatically, because in the parallel environment
we encapsulate the data so that it is processed only within processes. It is not possible for one process to
access another process object’s properties to modify its state by calling public methods.

Concurrent processes pass object references over channels and thus a sending process has to guarantee
that once it has written an object to a channel it does not modify that object in any way. This is most
easily achieved by defining a new object instance for each write operation, see Listing 5-3 {56, 74}. In
some cases, it may be necessary, for memory management reasons; to reuse an object and to ensure
that a written object is not overwritten a deep copy is taken. An interface JCSPCopy which contains
a single method copy() is provided in the org.jcsp.groovy package to facilitate this requirement.
The programmer has to write the code to achieve the deep copy of the object. This can then be applied
recursively to any nested objects.

If an object is to be passed between networked processes then a copy of the object is passed between the
processes and so the object must implement the interface serializable. In this case it is not necessary
to undertake the method copy because a new object instance is created every time. The object implements
the Serializable interface {10} so that were the object to be communicated over a network, then we
know that it will be correctly serialized.

5.1.4	 Exercising the Scale Device Network

Listing 5-5 gives the script that implements the process network shown in Figure 5-1.

10	def data = Channel.one2one()
11	def timedData = Channel.one2one()
12	def scaledData = Channel.one2one()
13	def oldScale = Channel.one2one()
14	def newScale = Channel.one2one()
15	def pause = Channel.one2one()
16
17	def network = [new GNumbers (outChannel: data.out()),
18			 new GFixedDelay (delay: 1000,
19					 		 inChannel: data.in(),
20					 		 outChannel: timedData.out()),
21
22			 new Scale (inChannel: timedData.in(),
23							 outChannel: scaledData.out(),
24							 factor: oldScale.out(),
25							 suspend: pause.in(),
26							 injector: newScale.in(),
27							 multiplier: 2,
28							 scaling: 2),
29							

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

79

�Extending the Alternative: A Scaling Device and Queues

30			 new Controller (testInterval: 11000,
31					 		 computeInterval: 3000,
32					 		 addition: -1,
33							 factor: oldScale.in(),
34							 suspend: pause.out(),
35							 injector: newScale.out()),
36
37			 new GPrint (inChannel: scaledData.in(),
38					 		 heading: "Original Scaled",
39					 		 delay: 0)
40]
41
42	new PAR (network).run()

Listing 5-5 Script to Exercise the Scale Device

All the output appears in the Eclipse console window with the messages from the Scale process
intermingled with those from the output of the original and scaled data which appear in GPrint. The
delay property {39} of GPrint is set to 0 so that any output is produced immediately. There is sufficient
delay, 1 second, within the system caused by the GFixedDelay process {18} to observe the process
interactions. In this execution of the script some of the default values in the Controller process have
been replaced by other values {30-35}.

5.2	 Managing A Circular Queue Using Alternative Pre-conditions

A queue is a common data structure used in many applications. A number of cases have to be considered
as follows.

•	 data can only be put into the queue if there is space in the queue
•	 data can only be taken from the queue if the queue is not empty

In a sequential implementation these states have to be tested before the queue can be manipulated and
dealing with the situations where either a put or get to or from the queue cannot be undertaken can
be problematic. A parallel implementation is much easier to design and specify because we can use an
alternative with pre-conditions to ensure that operations only take place when it is safe. Figure 5-2 shows
the basic structure that will be used to explain the operation of a queue.

The QProducer process puts a sequence of integers into the Queue process, where they are stored in a
wrap-around List implementing a circular queue. The QConsumer process attempts to get data from
the Queue, which, if there is data available, is received by the process.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

80

�Extending the Alternative: A Scaling Device and Queues

QProducer Queue QConsumer
put

get

receive

Figure 5-2 The Queue Process Network

5.2.1	 QProducer and QConsumer Processes

The source of the QProducer process is given in Listing 5-6.

10	class QProducer implements CSProcess {
11		
12	 def ChannelOutput put
13	 def int iterations = 100
14	 def delay = 0
15	
16	 void run () {
17	 def timer = new CSTimer()
18	 println "QProducer has started"
19		
20	 for (i in 1 .. iterations) {

“The perfect start
of a successful,
international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

81

�Extending the Alternative: A Scaling Device and Queues

21	 put.write(i)
22	 timer.sleep (delay)
23	 }
24	 put.write(null)
25	 }
26	}

Listing 5-6 The QProducer Process script

The timer {17} is used to create a delay {14} between each write {21} to the put channel. A sequence
of integers from 1 up to iterations {13} is output on the put channel. It should be noted that the
write on the put channel may be delayed {21} if the queue has no available space. Once all the values
have been written to the put channel a null value is also written {24} to indicate that processing has
finished. This will be used to terminate the subsequent Queue and QConsumer processes.

The QConsumer process is specified in Listing 5-7. The use of the timer and associated delay {17, 14}
is the same as in QProducer. A Boolean running is defined {19} and is used to control the main loop of
the process. The main loop of the process {21–28} initially writes a signal value of 1 on the get channel.
The writing of this signal {22} may be delayed if the queue contains no available data. A value is read from
the receive channel {23} into the object v. This read operation will take place immediately. The value
that has been read is printed {24} after which the process is delayed {25}. If the value read is null {26}
then running is set to false and the process will terminate at the next iteration of the while loop {21}.

10	class QConsumer implements CSProcess {
11		
12	 def ChannelOutput get
13	 def ChannelInput receive
14	 def long delay = 0
15	
16	 void run () {
17	 def timer = new CSTimer()
18	 println "QConsumer has started"
19	 def running = true
20		
21	 while (running) {
22	 get.write(1)
23	 def v = receive.read()
24	 println "QConsumer has read $v"
25	 timer.sleep (delay)
26	 if (v == null) running = false
27	 }
28	 }
29	}

Listing 5-7 The QConsumer Process

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

82

�Extending the Alternative: A Scaling Device and Queues

5.2.2	 The Queue Process

The source for the Queue process is shown in Listing 5-8.

The channel properties are defined {12–14} corresponding to Figure 5-2 and the size of the queue is
specified in the property elements and defaults to 5 {15}. The alternative associated with the Queue
process is defined as qAlt, which has guards comprising the put and get channels {18}. A Boolean
array, preCon, which has the same number of elements as there are guards in qAlt, is defined {19}.
Two constants PUT and GET are defined {20–21} that are used to index the preCon array and also to
identify the cases in the switch statement associated with identifying the selected guard in the alternative.

The array preCon is used to record whether or not a new element can be put into the queue storage and
similarly whether an element is available. Initially, therefore preCon[PUT] is set true {22} because there
is bound to be space for a new element in the queue data structure because it must be empty. Similarly,
preCon[GET] is set false {23} because there is no data available in the queue. The List data {24}
provides the storage for the circular queue structure. The variables count, front and rear {25–27}
record the state of the queue storage in terms of the number of data values in the queue, the location
into which data can be added and removed from the queue respectively. The process is implemented as
a loop {30-48}, which is controlled by a Boolean running {28} that is set false when a null value
is communicated to the QConsumer process {41}.

The variable index {31} indicates the alternative guard that has been selected. In order to be selected a
guard must have its associated preCon element set to true and its channel must be enabled to read an
input. Note how the pre-condition array is passed as a parameter to the alternative priSelect method
{31}. A choice is then made depending upon which guard has been selected. Priority is given to inputs
from QProducer rather than QConsumer {18}. It could have been replaced by a call to Select()
which would have allocated no relative priority between get and put operations.

In the case of PUT the value read from put is placed in data[front] {34} and then the values of count
and front are updated appropriately {35–36}. When GET is selected, the signal communication on the
get channel is read and ignored {39}. The value in data[rear] is then written to channel receive
{40}. The value in data[rear] is then tested to determine whether the Queue process should terminate
{41}. The operations have been ordered so that the terminating null value is sent to the QConsumer
process before the Queue process terminates. After which, the values of count and rear are updated
{42–43}. At the end of each loop of the queue process, the values stored in the elements of the preCon
array are updated based upon the relative values of count and elements {46, 47}.

http://bookboon.com/

Download free eBooks at bookboon.com

Using Concurrency and
Parallelism Effectively – I

83

�Extending the Alternative: A Scaling Device and Queues

10	class Queue implements CSProcess {
11		
12	 def ChannelInput put
13	 def ChannelInput get
14	 def ChannelOutput receive
15	 def int elements = 5
16	
17	 void run() {
18	 def qAlt = new ALT ([put, get])
19	 def preCon = new boolean[2]
20	 def PUT = 0
21	 def GET = 1
22	 preCon[PUT] = true
23	 preCon[GET] = false
24	 def data = []
25	 def counter = 0
26	 def front = 0
27	 def rear = 0
28	 def running = true
29		
30	 while (running) {
31	 def index = qAlt.priSelect(preCon)
32	 switch (index) {
33	 case PUT:
34	 data[front] = put.read()
35	 front = (front + 1) % elements
36	 counter = counter + 1
37	 break
38	 case GET:
39	 get.read()
40	 receive.write(data[rear])
41	 if (data[rear] == null) running = false
42	 rear = (rear + 1) % elements
43	 counter = counter – 1
44	 break
45	 }
46	 preCon[PUT] = (counter < elements)
47	 preCon[GET] = (counter > 0)
48	 }
49	 println "Q finished"
50	 }
51	}

Listing 5-8 The Queue Process Definition

The benefit of this alternative based formulation is that the pre-condition array modifies the behaviour
of its underlying mechanism. Thus if the queue is full then preCon[PUT] is false and even if there
is a communication on the put channel it will not be permitted. Similarly, if preCon[GET] is false
then no signal on the get channel can be read, even if QConsumer has tried to write to it, meaning
that a get cannot be executed on an empty queue..

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Using Concurrency and
Parallelism Effectively – I

84

�Extending the Alternative: A Scaling Device and Queues

5.3	 Summary

This chapter has explored the alternative mechanism together with its associated pre-condition Boolean
array. It has shown by means of an example based upon a realistic system and one found in many program
development applications that alternative has the ability to capture many aspects of real world systems
and to provide a flexible means of modelling such systems.

5.4	 Exercises

Exercise 51

The accompanying projects contain a script, called RunQueue, in package ChapterExercises/
src/c5 to run the queue network. The delays associated with QProducer and QConsumer
can be modified. By varying the delay times demonstrate that the system works in the manner
expected. Correct operation can be determined by the QConsumer process outputting the
messages "QConsumer has read 1" to "QConsumer has read 50" in sequence.
What do you conclude from these experiments?

Exercise 52

Reformulate the scaling device so that it uses pre-conditions rather than nested alternatives.
Which is the more elegant formulation? Why?

LIGS University
based in Hawaii, USA

▶▶ enroll by October 31st, 2014 and

▶▶ save up to 11% on the tuition!

▶▶ pay in 10 installments / 2 years

▶▶ Interactive Online education
▶▶ visit www.ligsuniversity.com to

 find out more!

is currently enrolling in the
Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

